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On a Numerical Solution of an Integral 
Equation with Singularities 

By Robert G. Voigt 

1. Introduction. Annular airfoil theory gives rise to Fredholm integral equations 
of the second kind in the following form: 

(1) f(x) = g(x) + f G(x, y)f(y) dy, O < x < 1, 

where the kernel G (x, y) has the form 

G(x, y) = (Y) dz, 

and g(x) is a continuous function; in particular it may be of the form 

(2) g(x) = r(x, Z) dz. 

For what follows, we will assume that q(y, z) and r(x, z) are continuous functions 
as they would be in most physical problems; however, the results are valid for more 
general functions. By using a Fourier series technique given in Collatz [1], we are 
able to neatly evaluate the singular integrals involved, but as will be seen, this is 
not the only advantage of the technique. We also obtain a kernel function of de- 
generate type; that is 

G(x, y) =EMi(x)M (y ). 

Then the integral equation may be solved using a method applicable to degenerate 
kernels such as the simple one given in Mikhlin [2]. 

An example of the method applied to an integral equation arising in annular 
airfoil theory is included at the end of this paper. 

2. Handling the Singularities. The first step in handling the singularities is to 
apply the changes of variables suggested by Collatz [1]: Let 

x 2(1 + cos 6), 

y (1 + cos 

z 2(1 + cos (). 
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Equation (1) may then be written in the form 

f*(6) = g* (0) + ! f G*(6 ik)f*(;P) sin &d4, 

where 

G*(G, ) _ fI q*(A,) sin w 
cos p-cos 0 

The * is used to simplify notation, e.g., 

f(x) = f[I (1 + cos 0)] j*(o) 

Now we may expand q*(41, up) sin so in a Fourier cosine series obtaining 

G*(0, En=o an(+) cos flP dp.0 Cos p-Cos 0 

Since q* (4,, so) sin so is a continuous function of sp, the series is uniformly convergent. 
Thus we may write 

G*(0, sf) = Z an(*) cos f djO 
n-0 .Cos p - Cos60 

If we now consider the Cauchy Principal Value of the integral, we have that 

G*(O ,*) = X E an(;) sin nO 
n=1 sill 6 

Since the infinite sum is convergent, we may approximate it to a prescribed degree 
of accuracy with a finite sum. This yields a kernel of degenerate type. 

If g(x) is given by Equation (2) it may be evaluated in the same way that G(x, y) 
was evaluated. Thus we obtain Equation (1) in a form free of singularities. 

3. Solution of the Equation. Equation (1) now has the form 

( )~~~~~~~~~~~~- *(0) _9* (0) + 'r tEa~~ i 1 snff() i 

Proceeding with the method of solution found in M\'Iikhlin [2] we write Equation (3) 
in the form 

(4) ~~~~~~~~Esin nio (4) f(0) -9* (0) + 2 E= Sin O Cn , 

where 

C4 = f an (1t) sin 4i f*(Vt) dil. 

Using Equation (4) in the expression for Cn we may write 

Cn - " tan(+) sin p 0g () +2m E sin t' C. dq -O. 
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Since this is true for n- 1, 2, , N, we have the following linear system: 

N 

(5) Cn - - , C,,mCm-n n = 1,2, ,AN, 2 m=l 

where 

n= fan (+) sin 4 g*(4) dV1, 

and 

an,m = i an(+) sin m# d#. 

After evaluating f3n and an,m , the system (5) may be solved for C.1. Substitution 
of C, values into Equation (4) then gives a solution to (1). 

4. Example. The following equation arises as part of the solution of the problem 
of finding the shape of an annular airfoil from a specified pressure distribution on 
the inner and outer surfaces of the airfoil, p-(x) and p+(x), respectively [3]. The 
annular airfoil has been nondimensionalized to have length 1 with the trailing edge 
at 0, thus x E [0, 1]. The equation is in the form of Equation (1) with g(x) in the 
form of Equation (2): 

f(x) = 2d ' f'r(xfz) dz (yz) f(y) d 
r -/(x(l -x)) o o-x z-x 

? (x z) = /(z(1 - z)) { u f u(t)k(z, t)[K[k(z, t)] -E[k(z, t)]] dt +7rw?(z) 

q(y, z) = /(z ( 
- z)) - k (y, z)E[kI(y, z)]1. 

The apparent square root singularities at x = 0 and x = 1 are removed when the 
changes of variables are made since f(x) represents a first derivative; i.e., the slope 
of the thickness distribution. Thus for this particular example 

f(x) = f *() sill 0 
2 

K[k(z, t)] and E[k(z, t)] are complete elliptic integrals of the first and second kind, 
respectively, with modulus k(z, t) = 1/V\(h2(z _ t)2 + 1). The quantity h is a 
specified constant, and u(t) and w(z), which are given, depend on p- and p+; 
a complete discussion is given in Reference [3]. 

The above example has been run on the IBM-7090 at the David Taylor Model 
Basin. The following table illustrates the effect of the number of coefficients on the 
stability of the solution. N is the number of coefficients used in the evaluation of 
the kernel function G; the next column is the number of significant places in the 
integral term of Equation (1) unaffected by increasing N; M is the number of co- 



166 ROBERT G. VOIGT 

efficients used in the evaluation of g; and the last column is the number of signifi- 
cant places in g unaffected by increasing M. 

N M 

5 4 5 2 
10 5 10 2 
15 5 15 2 
20 6 20 2 
25 6 25 2 
30 6 30 2 
35 6 35 3 
40 6 40 3 

45 4 
50 4 
55 4 

This table indicates that a better method should be investigated for the evalu- 
ation of g; however, in evaluating the kernel, the Fourier series technique seems 
to be satisfactory, and it is in this part of the problem that the two-fold advantage 
of the technique is realized. The present program requires less than two minutes on 
the 7090 for N = 20 and M = 45. 
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